Series BVM/2

रोल नं. Roll No.

कोड नं.
ode No. 6/2/1
परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 27 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains $\mathbf{1 5}$ printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 27 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

 CHEMISTRY (Theory)

 CHEMISTRY (Theory)}

सामान्य निर्देश :

(i) सभी प्रश्न अनिवार्य है ।
(ii) खण्ड अ : प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है /
(iii) खण्ड ब : प्रश्न संख्या 6 से 12 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं।
(iv) खण्ड स : प्रश्न संख्या 13 से 24 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
(v) खण्ड द : प्रश्न संख्या 25 से 27 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं ।
(vi) प्रश्न पत्र में समग्र विकल्प नहीं दिया गया है / फिर भी एक अंक वाले दो प्रश्नों में, दो अंकों वाले दो प्रश्नों में, तीन अंकों वाले चार प्रश्नों में तथा पाँच अंकों वाले तीनों प्रश्नों में विकल्प दिया गया है / ऐसे सभी प्रश्नों में से आपको एक ही विकल्प का उत्तर देना है /
(vii) यदि आवश्यकता हो, तो आप लघुगणकीय सारणियाँ माँग सकते हैं / कैल्कुलेटरों के प्रयोग की अनुमति नहीं है ।

General Instructions :

(i) All questions are compulsory.
(ii) Section A: Questions number 1 to 5 are very short answer questions and carry 1 mark each.
(iii) Section B: Questions number 6 to 12 are short answer questions and carry 2 marks each.
(iv) Section C: Questions number 13 to $\mathbf{2 4}$ are also short answer questions and carry 3 marks each.
(v) Section D: Questions number 25 to 27 are long answer questions and carry 5 marks each.
(vi) There is no overall choice. However, an internal choice has been provided in two questions of one mark, two questions of two marks, four questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
(vii) Use of log tables, if necessary. Use of calculators is not allowed. खण्ड अ

SECTION A

1. KCl और AgCl में से कौन शॉट्की दोष दर्शाता है और क्यों ? 1

अथवा

गरम करने पर ZnO पीला क्यों प्रतीत होता है ?
Out of KCl and AgCl , which one shows Schottky defect and why?

OR

Why does ZnO appear yellow on heating ?
2. निम्नलिखित को क्षारीय लक्षण के घटते हुए क्रम में व्यवस्थित कीजिए :

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

Arrange the following in decreasing order of basic character :

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

3. किस प्रकार का कोलॉइड बनता है जब किसी ठोस को द्रव में परिक्षिप्त किया जाता है ? एक उदाहरण दीजिए।
What type of colloid is formed when a solid is dispersed in a liquid ? Give an example.
4. क्लोरोबेन्ज़ीन और साइक्लोहेक्सिल क्लोराइड में से कौन नाभिक्नेही प्रतिस्थापन अभिक्रिया के प्रति अधिक अभिक्रियाशील है और क्यों ?
Out of Chlorobenzene and Cyclohexyl chloride, which one is more reactive towards nucleophilic substitution reaction and why?
5. स्टार्च और सेलुलोस में मूलभूत संरचनात्मक अंतर क्या है ?

अथवा

DNA के जल-अपघटन से प्राप्त उत्पाद लिखिए ।
What is the basic structural difference between starch and cellulose?

OR

Write the products obtained after hydrolysis of DNA.

खण्ड ब

SECTION B

6. निम्नलिखित प्रक्रमों के लिए संतुलित रासायनिक समीकरण लिखिए :
(a) बुझ़े चूने से Cl_{2} प्रवाहित की जाती है।
(b) Fe (III) लवण के जलीय विलयन से SO_{2} गैस प्रवाहित की जाती है।

अथवा
(a) क्लोरीन गैस से बनाई गई दो विषैली गैसों के नाम लिखिए।
(b) अमोनिया से अभिक्रिया करने पर Cu^{2+} विलयन नीला रंग क्यों देता है ?

Write balanced chemical equations for the following processes :
(a) Cl_{2} is passed through slaked lime.
(b) SO_{2} gas is passed through an aqueous solution of $\mathrm{Fe}(\mathrm{III})$ salt.

OR

(a) Write two poisonous gases prepared from chlorine gas.
(b) Why does Cu^{2+} solution give blue colour on reaction with ammonia?
7. कारण दीजिए :
(a) खाना बनाने के बर्तन की अपेक्षा प्रेशर कुकर में खाना अधिक शीघ्रता से पक जाता है।
(b) लाल रुधिर कोशिकाएँ (RBC) लवणीय जल में रखे जाने पर संकुचित हो जाती हैं परन्तु आसुत जल में फूल जाती हैं ।

Give reasons :

(a) Cooking is faster in pressure cooker than in cooking pan.
(b) Red Blood Cells (RBC) shrink when placed in saline water but swell in distilled water.
8. अभिक्रिया की कोटि परिभाषित कीजिए । दिए गए आलेखों में अभिक्रिया की कोटि की प्रागुक्ति कीजिए :
(a)

(b)

जहाँ $[\mathrm{R}]_{0}$ अभिकर्मक की प्रारम्भिक सान्द्रता है और $\mathrm{t}_{1 / 2}$ अर्ध आयु है ।
Define order of reaction. Predict the order of reaction in the given graphs :
(a)

(b)

where $[R]_{0}$ is the initial concentration of reactant and $t_{1 / 2}$ is half-life.
9. जब $\mathrm{FeCr}_{2} \mathrm{O}_{4}$ को वायु की उपस्थिति में $\mathrm{Na}_{2} \mathrm{CO}_{3}$ के साथ संगलित किया जाता है तो यौगिक (A) का पीला विलयन प्राप्त होता है । यौगिक (A) अम्लीकरण किए जाने पर यौगिक (B) देता है । यौगिक (B) KCl के साथ अभिक्रिया करके एक नारंगी रंग का यौगिक (C) बनाता है । यौगिक (C) का अम्लीय विलयन $\mathrm{Na}_{2} \mathrm{SO}_{3}$ को (D) में ऑक्सीकृत कर देता है । (A), (B), (C) और (D) की पहचान कीजिए ।

When $\mathrm{FeCr}_{2} \mathrm{O}_{4}$ is fused with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the presence of air it gives a yellow solution of compound (A). Compound (A) on acidification gives compound (B). Compound (B) on reaction with KCl forms an orange coloured compound (C). An acidified solution of compound (C) oxidises $\mathrm{Na}_{2} \mathrm{SO}_{3}$ to (D). Identify (A), (B), (C) and (D).
10. संकुल $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right]^{+}$का IUPAC नाम लिखिए । इस संकुल द्वारा किस प्रकार की संरचनात्मक समावयवता दर्शाई जाती है ?

अथवा

IUPAC मानदण्डों का उपयोग करते हुए निम्नलिखित संकुलों के सूत्र लिखिए :
(a) हेक्साएक्वाक्रोमियम(III) क्लोराइड
(b) सोडियम ट्राइऑक्सैलेटोफेरेट(III)

Write IUPAC name of the complex $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right]^{+}$. What type of structural isomerism is shown by this complex ?

OR

Using IUPAC norms, write the formulae for the following complexes :
(a) Hexaaquachromium(III) chloride
(b) Sodium trioxalatoferrate(III)
11. (a) यद्यपि $\left[\mathrm{NiCl}_{4}\right]^{2-}$ और $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ दोनों में sp^{3} संकरण होता है फिर भी $\left[\mathrm{NiCl}_{4}\right]^{2-}$ अनुचुम्बकीय है और $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ प्रतिचुम्बकीय है । कारण दीजिए । $(\mathrm{Ni}$ का परमाणु क्रमांक $=28)$
(b) क्रिस्टल क्षेत्र सिद्धान्त के आधार पर d^{5} का इलेक्ट्रॉनिक विन्यास लिखिए जबकि
(i) $\Delta_{0}<\mathrm{P}$ और
(ii) $\Delta_{0}>P$
(a) Although both $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ have sp^{3} hybridisation yet $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic. Give reason. (Atomic no. of $\mathrm{Ni}=28$)
(b) Write the electronic configuration of d^{5} on the basis of crystal field theory when
(i) $\quad \Delta_{0}<\mathrm{P}$ and
(ii) $\Delta_{0}>\mathrm{P}$
12. निम्नलिखित प्रत्येक अभिक्रिया में मुख्य यौगिकों A और B की संरचनाएँ लिखिए :
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow{\mathrm{PCl}_{5}} \mathrm{~A} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}} \mathrm{~B}$
(b) $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{A} \xrightarrow{\mathrm{Zn}(\mathrm{Hg}) / \text { सान्द्र } \mathrm{HCl}} \mathrm{B}$

Write structures of main compounds A and B in each of the following reactions:
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow{\mathrm{PCl}_{5}} \mathrm{~A} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}} \mathrm{~B}$
(b) $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{A} \xrightarrow{\mathrm{Zn}(\mathrm{Hg}) / \text { conc. } \mathrm{HCl}} \mathrm{B}$

खण्ड स

SECTION C

13. अभिक्रिया $\mathrm{A}+2 \mathrm{~B} \longrightarrow \mathrm{C}$ के लिए निम्नलिखित आँकड़े प्राप्त हुए :

प्रयोग	$[\mathrm{A}] / \mathrm{M}$	$[\mathrm{B}] / \mathrm{M}$	C के विरचन का प्रारम्भिक वेग $/ \mathrm{M} \mathrm{min}^{-1}$
1	0.2	0.3	4.2×10^{-2}
2	$0 \cdot 1$	0.1	6.0×10^{-3}
3	0.4	0.3	1.68×10^{-1}
4	0.1	0.4	2.40×10^{-2}

(a) A और B के प्रति अभिक्रिया की कोटि ज्ञात कीजिए ।
(b) वेग नियम और अभिक्रिया की कुल कोटि लिखिए ।
(c) वेग स्थिरांक (k) परिकलित कीजिए ।

The following data were obtained for the reaction :

$$
\mathrm{A}+2 \mathrm{~B} \longrightarrow \mathrm{C}
$$

Experiment	$[\mathrm{A}] / \mathrm{M}$	$[\mathrm{B}] / \mathrm{M}$	Initial rate of formation of C $/ \mathrm{M} \mathrm{min}^{-1}$
1	$0 \cdot 2$	$0 \cdot 3$	4.2×10^{-2}
2	$0 \cdot 1$	$0 \cdot 1$	6.0×10^{-3}
3	$0 \cdot 4$	$0 \cdot 3$	$1 \cdot 68 \times 10^{-1}$
4	$0 \cdot 1$	0.4	2.40×10^{-2}

(a) Find the order of reaction with respect to A and B .
(b) Write the rate law and overall order of reaction.
(c) Calculate the rate constant (k).
14. (a) धूल की परिक्षिप्त प्रावस्था और परिक्षेपण माध्यम लिखिए ।
(b) भौतिक अवशोषण उत्क्रमणीय जबकि रसोशोषण अनुत्क्रमणीय क्यों है ?
(c) चित्र में दी गई विधि द्वारा एक कोलॉइडी सॉल बनाया गया । परखनली में बने AgI कोलॉइडी कणों के ऊपर क्या आवेश है ? यह सॉल कैसे निरूपित किया जाता है ?

विलयन
(a) Write the dispersed phase and dispersion medium of dust.
(b) Why is physisorption reversible whereas chemisorption is irreversible?
(c) A colloidal sol is prepared by the method given in the figure. What is the charge on AgI colloidal particles formed in the test tube ? How is this sol represented?

15. परमाणु द्रव्यमान 81 u के किसी तत्त्व X का घनत्व $10 \cdot 2 \mathrm{~g} \mathrm{~cm}^{-3}$ है । यदि एकक कोष्ठिका का आयतन $2.7 \times 10^{-23} \mathrm{~cm}^{3}$ है, तो घनीय एकक कोष्ठिका के प्रकार की पहचान कीजिए । (दिया गया है : $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)
An element X with an atomic mass of 81 u has density $10 \cdot 2 \mathrm{~g} \mathrm{~cm}^{-3}$. If the volume of unit cell is $2.7 \times 10^{-23} \mathrm{~cm}^{3}$, identify the type of cubic unit cell. (Given : $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)
16. 1.9 g प्रति $100 \mathrm{~mL} \mathrm{KCl}\left(\mathrm{M}=74.5 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ का विलयन 3 g प्रति 100 mL यूरिया $\left(\mathrm{M}=60 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ के साथ समपरासरी है । KCl विलयन की वियोजन की मात्रा परिकलित कीजिए । मान लीजिए कि दोनों विलयन समान ताप पर हैं ।

A solution containing 1.9 g per 100 mL of $\mathrm{KCl}\left(\mathrm{M}=74.5 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is isotonic with a solution containing 3 g per 100 mL of urea ($\mathrm{M}=60 \mathrm{~g} \mathrm{~mol}^{-1}$). Calculate the degree of dissociation of KCl solution. Assume that both the solutions have same temperature.
17. (a) ज़िंक, (b) जर्मेनियम, (c) टाइटेनियम के लिए प्रयुक्त परिष्करण विधि का नाम और सिद्धान्त लिखिए ।

Write the name and principle of the method used for refining of (a) Zinc, (b) Germanium, (c) Titanium.
18. निम्नलिखित के लिए कारण दीजिए :
(a) संकरण धातुएँ संकुल यौगिक बनाती हैं ।
(b) $\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)$ और $\left(\mathrm{Mn}^{2+} / \mathrm{Mn}\right)$ के लिए E^{o} के मान अपेक्षित मानों से अधिक ऋणात्मक होते हैं ।
(c) ऐक्टिनॉयड ऑक्सीकरण अवस्थाओं का अधिक परास दर्शाते हैं ।

Give reasons for the following :
(a) Transition metals form complex compounds.
(b) E^{o} values for $\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)$ and $\left(\mathrm{Mn}^{2+} / \mathrm{Mn}\right)$ are more negative than expected.
(c) Actinoids show wide range of oxidation states.
19. निम्नलिखित बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों की संरचनाएँ लिखिए :
(a) नाइलॉन-6
(b) टेरीलीन
(c) ब्यूना-N

अथवा

(a) क्या $\left.£ \mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{\mathrm{n}}$ एक समबहुलक अथवा सहबहुलक है ? कारण दीजिए ।
(b) निम्नलिखित बहुलक के एकलक लिखिए :

$$
\begin{array}{ccc}
\mathrm{fO}-\underset{\text { CH }}{\mathrm{CH}}-\mathrm{CH}_{2}-\underset{\text { II }}{\mathrm{C}}-\mathrm{O}-\underset{\mathrm{CH}}{\mathrm{CH}}-\mathrm{CH}_{2}-\underset{\text { II }}{\mathrm{C}} \mathrm{f}_{\mathrm{n}} \\
\mathrm{CH}_{3} & \mathrm{O} & \mathrm{C}_{2} \mathrm{H}_{5} \\
\mathrm{O}
\end{array}
$$

(c) एथीन के बहुलकन में बेन्ज़ॉयल परॉक्साइड की भूमिका लिखिए ।

Write the structures of monomers used for getting the following polymers:
(a) Nylon-6
(b) Terylene
(c) Buna-N

OR

(a) Is $£ \mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \dagger_{\mathrm{n}}$ a homopolymer or copolymer ? Give reason.
(b) Write the monomers of the following polymer :

(c) Write the role of benzoyl peroxide in polymerisation of ethene.
20. (a) निम्नलिखित में से उनके चिकित्सीय गुणों के आधार पर एक विषम को छाँटिए :

इक्वैनिल, सेकोनल, बाइथायोनल, ल्यूमिनल
(b) बर्तन धोने के उपयोग में आने वाले द्रव अपमार्जक किस प्रकार के अपमार्जक होते हैं ?
(c) ऐस्पार्टेम का उपयोग केवल ठंडे खाद्य पदार्थों तक ही सीमित क्यों है ?

अथवा
प्रत्येक के लिए उचित उदाहरण सहित निम्नलिखित पदों को परिभाषित कीजिए :
(a) प्रतिजैविक (एन्टिबायोटिक)
(b) पूतिरोधी (एन्टिसेप्टिक)
(c) ऋणायनी अपमार्जक
(a) Pick out the odd one from the following on the basis of their medicinal properties :

Equanil, Seconal, Bithional, Luminal
(b) What type of detergents are used in dishwashing liquids ?
(c) Why is the use of aspartame limited to cold foods?

OR

Define the following terms with a suitable example of each :
(a) Antibiotics
(b) Antiseptics
(c) Anionic detergents
21. अणुसूत्र $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ के सभी समावयवों में से, पहचानिए
(a) एक समावयव जो ध्रुवण घूर्णक है ।
(b) एक समावयव जो $\mathrm{S}_{\mathrm{N}} 2$ के प्रति अत्यधिक अभिक्रियाशील है ।
(c) ऐसे दो समावयव जो ऐल्कोहॉली पोटैशियम हाइड्रॉक्साइड द्वारा विहाइड्रोजनन के फलस्वरूप एक जैसा उत्पाद देते हैं।
Among all the isomers of molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$, identify
(a) the one isomer which is optically active.
(b) the one isomer which is highly reactive towards $\mathrm{S}_{\mathrm{N}} 2$.
(c) the two isomers which give same product on dehydrohalogenation with alcoholic KOH .
22. निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :
(a)

(b)

(c)
 अथवा
आप निम्नलिखित रूपांतरण कैसे करेंगे :
(a) N -फेनिलएथेनेमाइड से p -ब्रोमोऐनिलीन
(b) बेन्ज़ीन डाइएज़ोनियम क्लोराइड से नाइट्रोबेन्ज़ीन
(c) बेन्ज़ोइक अम्ल से ऐनिलीन

Complete the following reactions :
(a)

(b)

(c)

OR

How do you convert the following :
(a) N-phenylethanamide to p-bromoaniline
(b) Benzene diazonium chloride to nitrobenzene
(c) Benzoic acid to aniline
23. (a) कारण दीजिए :
(i) ऐसीटिक अम्ल की अपेक्षा बेन्ज़ोइक अम्ल प्रबलतर अम्ल होता है ।
(ii) एथेनेल की अपेक्षा मेथैनेल नाभिकस्नेही योगज अभिक्रियाओं के प्रति अधिक अभिक्रियाशील होता है ।
(b) प्रोपेनैल और प्रोपेनोन के बीच विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए ।
(a) Give reasons:
(i) Benzoic acid is a stronger acid than acetic acid.
(ii) Methanal is more reactive towards nucleophilic addition reaction than ethanal.
(b) Give a simple chemical test to distinguish between propanal and propanone.
24. (a) माल्टोस के जल-अपघटन के उत्पाद क्या हैं ?
(b) प्रोटीन की α-हेलिक्स संरचना को किस प्रकार का आबन्धन स्थायित्व प्रदान करता है ?
(c) उस विटामिन का नाम लिखिए जिसकी कमी से प्रणाशी रक्ताल्पता हो जाती है ।

अथवा
निम्नलिखित पदों को परिभाषित कीजिए :
(a) प्रतीप शर्करा
(b) प्राकृत प्रोटीन
(c) न्यूक्लिओटाइड
(a) What are the products of hydrolysis of maltose?
(b) What type of bonding provides stability to α-helix structure of protein?
(c) Name the vitamin whose deficiency causes pernicious anaemia.

OR

Define the following terms :
(a) Invert sugar
(b) Native protein
(c) Nucleotide

खण्ड द

SECTION D

25. (a) $0.001 \mathrm{~mol} \mathrm{~L}^{-1}$ ऐसीटिक अम्ल की चालकता $4.95 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ है । यदि ऐसीटिक अम्ल के लिए \wedge_{m}^{0} का मान $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है, तो इसके वियोजन स्थिरांक का परिकलन कीजिए ।
(b) अभिक्रिया

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

के लिए $25^{\circ} \mathrm{C}$ पर नेन्स्स्ट समीकरण लिखिए ।
(c) संचायक बैटरियाँ क्या हैं ? एक उदाहरण दीजिए ।

अथवा
(a) उस सेल को निरूपित कीजिए जिसमें निम्नलिखित अभिक्रिया होती है :

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Ni}^{2+}(0 \cdot 1 \mathrm{M}) \longrightarrow 2 \mathrm{Al}^{3+}(0 \cdot 01 \mathrm{M})+3 \mathrm{Ni}(\mathrm{~s})
$$

इसका वि.वा.बल (emf) परिकलित कीजिए यदि $\mathrm{E}_{\text {सेल }}^{0}=1.41 \mathrm{~V}$ है ।
(b) प्रबल और दुर्बल विद्युत्-अपघट्य के लिए सान्द्रता बढ़ने के साथ मोलर चालकता किस प्रकार परिवर्तित होती है ? आप दुर्बल विद्युत्-अपघट्य के लिए सीमांत मोलर चालकता $\left(\wedge_{\mathrm{m}}^{0}\right)$ कैसे प्राप्त कर सकते हैं ?
(a) The conductivity of $0.001 \mathrm{~mol} \mathrm{~L}^{-1}$ acetic acid is $4.95 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate the dissociation constant if Λ_{m}^{0} for acetic acid is $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
(b) Write Nernst equation for the reaction at $25^{\circ} \mathrm{C}$:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

(c) What are secondary batteries? Give an example.

OR

(a) Represent the cell in which the following reaction takes place :

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Ni}^{2+}(0 \cdot 1 \mathrm{M}) \longrightarrow 2 \mathrm{Al}^{3+}(0 \cdot 01 \mathrm{M})+3 \mathrm{Ni}(\mathrm{~s})
$$

Calculate its emf if $\mathrm{E}_{\text {cell }}^{0}=1.41 \mathrm{~V}$.
(b) How does molar conductivity vary with increase in concentration for strong electrolyte and weak electrolyte? How can you obtain limiting molar conductivity (\wedge_{m}^{0}) for weak electrolyte?
26. (a) निम्नलिखित अभिक्रियाओं के लिए समीकरण दीजिए :
(i) फ़ीनॉल की सान्द्र HNO_{3} के साथ अभिक्रिया की जाती है ।
(ii) प्रोपीन की $\mathrm{B}_{2} \mathrm{H}_{6}$ से अभिक्रिया करके $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}$से अभिक्रिया की जाती है।
(iii) सोडियम तृतीयक-ब्यूटॉक्साइड की $\mathrm{CH}_{3} \mathrm{Cl}$ के साथ अभिक्रिया की जाती है ।
(b) ब्यूटेन-1-ऑल और ब्यूटेन-2-ऑल के बीच आप कैसे विभेद करेंगे ?
(c) निम्नलिखित को अम्लीयता के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

> फ़ीनॉल, एथेनॉल, जल

अथवा

(a) (i) क्यूमीन, (ii) बेन्ज़ीन सल्फोनिक अम्ल, (iii) बेन्ज़ीन डाइएज़ोनियम क्लोराइड से आप फ़ीनॉल कैसे प्राप्त कर सकते हैं ?
(b) 3-मेथिलफ़ीनॉल के द्विनाइट्रोकरण से प्राप्त मुख्य उत्पाद की संरचना लिखिए ।
(c) कोल्बे अभिक्रिया से सम्बद्ध अभिक्रिया लिखिए ।
(a) Give equations of the following reactions:
(i) Phenol is treated with conc. HNO_{3}.
(ii) Propene is treated with $\mathrm{B}_{2} \mathrm{H}_{6}$ followed by $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}$.
(iii) Sodium t-butoxide is treated with $\mathrm{CH}_{3} \mathrm{Cl}$.
(b) How will you distinguish between butan-1-ol and butan-2-ol ?
(c) Arrange the following in increasing order of acidity :

Phenol, ethanol, water

OR

(a) How can you obtain Phenol from (i) Cumene, (ii) Benzene sulphonic acid, (iii) Benzene diazonium chloride?
(b) Write the structure of the major product obtained from dinitration of 3-methylphenol.
(c) Write the reaction involved in Kolbe's reaction.
27. (a) निम्नलिखित के कारण दीजिए :
(i) वर्ग 15 में N से Bi तक -3 ऑक्सीकरण अवस्था दर्शाने की प्रवृत्ति घटती है।
(ii) $\mathrm{H}_{2} \mathrm{O}$ से $\mathrm{H}_{2} \mathrm{Te}$ तक अम्लीय लक्षण बढ़ता है ।
(iii) ClF_{3} की अपेक्षा F_{2} अधिक अभिक्रियाशील है, जबकि Cl_{2} की अपेक्षा ClF_{3} अधिक अभिक्रियाशील है ।
(b) (i) XeF_{2}, (ii) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ की संरचना खींचिए । 5 अथवा
(a) फ्लुओरीन की असामान्य अभिक्रिया दर्शाने के लिए एक उदाहरण दीजिए।
(b) श्वेत फ़ॉस्फ़ोरस और लाल फ़ॉस्फ़ोरस के बीच एक संरचनात्मक अन्तर क्या है ?
(c) क्या होता है जब $\mathrm{XeF}_{6}, \mathrm{NaF}$ से अभिक्रिया करता है ?
(d) $\mathrm{H}_{2} \mathrm{O}$ की अपेक्षा $\mathrm{H}_{2} \mathrm{~S}$ एक बेहतर अपचायक क्यों है ?
(e) निम्नलिखित अम्लों को उनके अम्लीय लक्षण के बढ़ते हुए क्रम में व्यवस्थित कीजिए : $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ और HI
(a) Account for the following :
(i) Tendency to show -3 oxidation state decreases from N to Bi in group 15.
(ii) Acidic character increases from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{Te}$.
(iii) $\quad \mathrm{F}_{2}$ is more reactive than ClF_{3}, whereas ClF_{3} is more reactive than Cl_{2}.
(b) Draw the structure of (i) XeF_{2}, (ii) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.

OR

(a) Give one example to show the anomalous reaction of fluorine.
(b) What is the structural difference between white phosphorus and red phosphorus?
(c) What happens when XeF_{6} reacts with NaF ?
(d) Why is $\mathrm{H}_{2} \mathrm{~S}$ a better reducing agent than $\mathrm{H}_{2} \mathrm{O}$?
(e) Arrange the following acids in the increasing order of their acidic character :
$\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI

Strictly Confidential: (For Internal and Restricted use only)
 Senior School Certificate Examination
 March 2019
 Marking Scheme - CHEMISTRY (SUBJECT CODE: 043)

(PAPER CODE - 56-2-1)

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled.
5. If a question does not have any parts, marks must be awarded in the left hand margin and encircled.
6. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
7. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
8. A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
9. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 25 answer books per day.
10. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

11. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0) Marks.
12. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
13. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
15. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

Marking scheme - 2019

CHEMISTRY (043)/ CLASS XII

56/2/1

	SECTION - A	Marks
1	KCl , Due to comparable sizes of K^{+}and Cl^{-}	$1 / 2+1 / 2$
	OR	
1	On heating, excess Zn^{2+} ions move to interstitial sites and the electrons to neighbouring interstitial sites/ because of metal excess defect due to presence of extra Zn^{2+} cations at interstitial sites	1
2	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	1
3	Sol, Example- Paints (Or any other correct example)	$1 / 2+1 / 2$
4	Cyclohexyl chloride ; Because of partial double bond character of C-Cl bond in Chlorobenzene / Resonance effect / sp ${ }^{3}$ hybridised carbon in cyclohexyl chloride whereas sp^{2} carbon in chlorobenzene.	$1 / 2+1 / 2$
5	Starch is a polymer of α-glucose whereas cellulose is a polymer of β-glucose.	1
	OR	
5	2-deoxyribose + nitrogen containing heterocyclic base + phosphoric acid	1
	SECTION -B	
6	a) $2 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{Cl}_{2} \quad \rightarrow \mathrm{CaCl}_{2}+\mathrm{Ca}(\mathrm{OCl})_{2}+2 \mathrm{H}_{2} \mathrm{O}$ b) $\mathrm{SO}_{2}+2 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
	OR	
6	a) Mustard gas, tear gas, phosgene (Any two) b) Because it forms blue coloured complex $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}(\mathrm{aq})$ or Equation	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & \hline \end{aligned}$
7	a) Due to increase of pressure in cooker, boiling point of water increases. b) RBC looses water in saline water and absorb water in distilled water due to osmosis.(Or any other correct reason)	1+1
8	It is defined as the sum of powers to which the concentration terms are raised in the rate law equation. a) First order b) zero order	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
9	$\mathrm{A}=\mathrm{Na}_{2} \mathrm{CrO}_{4} ; \mathrm{B}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ; \mathrm{C}=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ; \mathrm{D}=\mathrm{Na}_{2} \mathrm{SO}_{4}$	$1 / 2 \times 4$
10	Chloridobis(ethane-1,2-diamine)nitrito- N -cobalt(III) ion Linkage isomerism	1+1
	OR	
10	i) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}$ 3	1+1
11	a) In $\left[\mathrm{NiCl}_{4}\right]^{2-}, \mathrm{Cl}^{-}$is a weak field ligand due to which there are two unpaired electrons in 3d orbital whereas in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{CN}^{-}$is a strong field ligand due to which pairing leads to no unpaired electron in 3d-orbital/ Or structural representation b) i) $t_{2 g}{ }^{3} \mathrm{eg}^{2}$ ii) $\mathrm{t}_{2 \mathrm{~g}}{ }^{5} \mathrm{e}_{\mathrm{g}}{ }^{0}$	$1 / 2+1 / 2$ $1 / 2+1 / 2$
12	i) $\quad \mathrm{A}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \quad \mathrm{B}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$1 / 2+1 / 2$
	ii) $\quad \mathrm{A}=\mathrm{CH}_{3} \mathrm{COCH}_{3} \quad \mathrm{~B}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$1 / 2+1 / 2$
	SECTION -C	

13	$\text { Rate }=k[A]^{p}[B]^{q}$ On solving a) Order with respect to $A=2, B=1$ b) Rate $=k[A]^{2}[B]^{1}$; overall order $=3$ c) Experiment 1: $4.2 \times 10^{-2}=k(0.2)^{2}(0.3) \quad ; k=3.5$ Experment 2: $6.0 \times 10^{-3}=k(0.1)^{2}(0.1) \quad ; k=6$ (Full marks may be awarded for any one correct answer)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2,1 / 2 \\ & 1 \end{aligned}$
14	i) Dispersed phase = solid ; Dispersion medium = gas ii) Due to weak van der Waal's forces in physisorption whereas strong chemical forces in chemisorption. iii) Positively charged, $\mathrm{Agl}_{\mathrm{I}} / \mathrm{Ag}^{+}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
15	$\begin{aligned} & \mathrm{d}=\frac{z M}{N_{A} \times a^{3}} \\ & \mathrm{Z}=\frac{d \times N_{A} \times a^{3}}{M} \\ & =\frac{10.2 \times 6.022 \times 10^{23} \times 2.7 \times 10^{-23}}{81} \\ & =2 \end{aligned}$ Hence lattice is bcc.	$1 / 2$ 1 1 $1 / 2$
16	$\begin{aligned} & \pi_{1} \text { (urea) }=\pi_{2} \quad(\mathrm{KCl}) \\ & \mathrm{C}_{1} \mathrm{RT}=\mathrm{i} \mathrm{C}_{2} \mathrm{RT} \\ & \frac{n_{1}}{V 1}=\mathrm{i} \frac{n_{2}}{V 2} \quad(\mathrm{~V} 1=\mathrm{V} 2) \\ & \frac{3}{60}=\mathrm{i} \times \frac{1.9}{74.5} \\ & \mathrm{i}=1.96 \\ & \propto=\frac{i-1}{n-1} \\ & =\frac{1.96-1}{2-1} \\ & =0.96 \text { or } 96 \% \end{aligned}$	$1 / 2$ 1 $1 / 2$ 1
17	a) Distillation/ Electrolytic refining: The impure metal is evaporated to obtain the pure metal as distillate/ The more basic metal remains in the solution and the less basic ones go to the anode mud. b) Zone refining : Impurities are more soluble in the melt than in the solid state of the metal. c) van Arkel method: The metal should form a volatile compound which decomposes at higher temperature to pure metal.	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$

18	i) Due to small size , high ionic charge and availabilty of d-orbital. ii) Due to stable $3 \mathrm{~d}^{10}$ configuration in Zn^{2+} and $3 \mathrm{~d}^{5}$ configuration in Mn^{2+}. iii) Due to comparable energies of $5 \mathrm{f}, 6 \mathrm{~d}$ and 7 s orbitals / levels.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1
19	a) b) $\mathrm{HOH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$, c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$	1,1,1
	OR	
19	a) Homopolymer ; As the same monomer is repeated. b) c) It acts as an initiator.	$1 / 2,1 / 2$ 1 1
20	i) Bithional ii) Non-ionic detergents iii) Because it is unstable at cooking temperature.	1,1,1
	OR	
20	a) These are chemical substances produced by micro-organisms which kill or inhibit the growth of microorganisms. Ex. Penicillin b) These are chemical substances which kill or prevent the growth of microorganisms when applied on living tissues. Ex. Dettol c) These are sodium salts of sulphonated long chain alcohols or hydrocarbons. / Anionic part of the molecule is involved in cleansing action.Example- sodium lauryl sulphate. (Or any other one correct example)	$\begin{gathered} 1 / 2+1 / 2 \\ \\ 1 / 2+1 / 2 \\ 1 / 2+1 / 2 \end{gathered}$
21	I) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$ II) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ III) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 / 2+1 / 2 \\ \hline \end{array}$

22	a) $\square \mathrm{CH}_{2} \mathrm{NH}_{2}$	$1 \times 3=3$

	b) c)	
	OR	
22	a) b) c) (or any other suitable method)	1×3
23	a) i) Due to greater electronegativity of sp^{2} hybridised carbon to which carboxyl carbon is attached / Due to greater resonance stabilization of carboxylate ion with the benzene ring. ii) Because carbonyl carbon of methanal is more electrophilic than that of ethanol / due to + l effect of methyl group in ethanal, reactivity decreases. b) On heating with Tollens'reagent / $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$, propanal forms silver mirror whereas propanone does not. (or any other suitable chemical test)	$1+1$ 1
24	a) Glucose + Glucose b) Hydrogen bonding c) Vitamin - B_{12}	1+1+1
	OR	
24	i) Hydrolysis of sucrose brings a change of sign of rotation from dextro(+) to laevo(-) and the product is named as invert sugar. ii) Protein found in biological system with unique three dimensional structure and biological activity is called native protein. iii) A unit formed by the combination of nitrogenous base, pentose sugar and phosphate.	1,1,1
	SECTION -D	

\begin{tabular}{|c|c|c|}
\hline 25 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \Lambda_{m}=\frac{\kappa}{c}=\frac{4.95 \times 10^{-5} \mathrm{Scm}^{-1}}{0.001} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned} \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}=49.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .
\] \\
a)
\[
K=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}=\frac{0.001 \mathrm{molL}^{-1} \times(0.126)^{2}}{1-0.126}=1.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}
\] \\
(If \(\mathrm{K}=\mathrm{c} \alpha^{2}\), then \(\mathrm{K}=1.6 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\) \\
b)
\[
E_{(\text {cell })}=E_{(\text {cell })}^{\ominus}-\frac{0.059}{6} \log \frac{\left[\mathrm{Al}^{3+}\right]^{2}}{\left[\mathrm{Cu}^{2+}\right]^{3}}
\] \\
c) Batteries which are rechargeable \\
Example- Lead storage, Ni-Cd batteries (Or any other one example)
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\[
1 / 2,1 / 2
\]
\end{tabular} \\
\hline \& OR \& \\
\hline 25 \& \begin{tabular}{l}
a) \(\mathrm{Al}(\mathrm{s})\left|\mathrm{Al}{ }^{3+}(0.01 \mathrm{M})\right|\left|\mathrm{Ni}^{2+}(0.1 \mathrm{M})\right| \mathrm{Ni}(\mathrm{s})\)
\[
\begin{aligned}
\& E_{\text {(cell) }}=E_{\text {(cell) }}^{\ominus}-\frac{0.059}{6} \log \frac{\left[\mathrm{Al}^{3+}\right]^{2}}{\left[\mathrm{Ni}^{2+}\right]^{3}} \\
\& E_{\text {(cell) }}=1.41 \mathrm{~V}-\frac{0.059}{6} \log \frac{[0.01]^{2}}{[0.1]^{3}} \\
\& E_{\text {(cell) }}=1.4198 \mathrm{~V} \\
\& \text { or } E_{\text {cell }}=1.42 \mathrm{~V}
\end{aligned}
\] \\
b) \(\Lambda_{m}\) decreases with increase in concentration for both strong \& weak electrolyte \\
\(\Lambda_{\mathrm{m}}{ }^{0}\) can be obtained for weak electrolyte by applying Kohlrausch law / \(\Lambda_{m}^{\circ}=v_{+} \lambda_{+}^{0}+v_{-} \lambda_{-}^{0}\)
\end{tabular} \& 1
\(1 / 2\)
1
\(1 / 2\)
\(1+1\) \\
\hline 26 \& \begin{tabular}{l}
a) (i) \(\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\left(\mathrm{H}-\mathrm{BH}_{2}\right)_{2} \longrightarrow\)
\(\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{3} \mathrm{~B}\)
\(\mathrm{H}_{2} \mathrm{O}^{2} 3 \mathrm{H}_{2} \mathrm{O}_{2}, \overline{\mathrm{O}} \mathrm{H}\) \\
(ii) \(3 \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\) \\
(iii)
\end{tabular} \& 1
1
1

1

\hline
\end{tabular}

	b) On heating with $\mathrm{NaOH} / \mathrm{I}_{2}$, Butan - 2 - ol forms yellow ppt of iodoform $\left(\mathrm{CHI}_{3}\right)$ whereas butan -1 -ol does not. (Or any other correct chemical test) c) Ethanol < water < Phenol	
	OR	
26	a) (i) $+\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (ii) (iii) b) c)	1 1 1 1 1
27	a) i) Due to increase in size and metallic character. ii) Due to decrease in bond dissociation enthalpy . iii)Due to lower bond dissociation enthalpy of $\mathrm{F}-\mathrm{F}$ bond than $\mathrm{Cl}-\mathrm{F}$ bond whereas $\mathrm{Cl}-$ Cl bond has higher bond dissociation enthalpy than $\mathrm{Cl}-\mathrm{F}$ bond. b) (ii)	1,1,1,1,1
	OR	
27	i) $2 \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$ ii) White phosphorus is discrete tetrahedral whereas red phosphorus is polymeric / or structures drawn iii) It forms $\mathrm{Na}^{+}\left[\mathrm{XeF}_{7}\right]^{-} / \mathrm{XeF}_{6}+\mathbf{N a} \rightarrow \quad \mathbf{N a}^{+}\left[\mathrm{XeF}_{7}\right]$ iv) Due to lower bond dissociation enthalpy of $\mathrm{H}-\mathrm{S}$ bond than $\mathrm{H}-\mathrm{O}$ bond. v) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$	1x5

